BioVision

Cathepsin G Acti

(Catalog #K146-100; 100 assays; Store kit at -20°C)

I. Introduction: Cathepsin G is an enzymatic protein belonging to the peptidase or protease families. The protein is found in azurophil granules of neutrophilic polymorphonuclear leukocytes. The encoded protease has a specificity similar to that of chymotrypsin C, and may participate in the killing and digestion of engulfed pathogens, and in connective tissue remodeling at sites of inflammation. In BioVision's Cathepasin G Activity assay Kit, Cathepsin G will cleave the substrate and release the dye group, pNA (4-Nitroaniline), which can be detect at 405 nm. In presence of the Cathepsin G specific inhibitor, the cleavage will be stopped. The kit provides a rapid, simple, sensitive, and reliable test suitable for the activity of Cathepsin G.

II. Kit Contents:

Components	100 assays	Cap Color	Part Number
Assay Buffer	25 ml	WM	K146-100-1
Substrate	200 µl	Red	K146-100-2
Cathepsin G Inhibitor	20 µl	Blue	K146-100-3
pNA Standard (0.1 M)	20 µl	Yellow	K146-100-4
Positive Control	1 vial	Green	K146-100-5

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow Assay Buffer to warm to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay.

Reconstitute positive control with 20 μl dH2O. Store in -20°C, avoid thaw and freeze cycle, good for using in 1 month.

IV. Cathepsin Activity assay Protocol:

1. Standard Curve Preparation:

Dilute 5 μ l 0.1 M *p*NA (4-Nitroaniline) standard into 95 μ l assay buffer to prepare 5 mM *p*NA. Add 0, 2, 4, 6, 8, 10 μ l 5 mM *p*NA standard into each well individually. Adjust volume to 100 μ l/well with Assay Buffer to generate 0, 10, 20, 30, 40, 50 nmol/well of *p*NA standard. Read O.D at 405 nm.

2. Sample Preparations:

Collect cells (10^6) by centrifugation.. Lyse cells in 50 µl of chilled Assay Buffer. Incubate cells on ice for 10 minutes. Centrifuge 13000 rpm for 5 min in bench-top micro-centrifuge to remove insoluble materials. Transfer the clear lysate into a new tube. Measure protein concentration if desired. Serum samples can be directly diluted in the Assay Buffer. Prepare duplicate test samples of up to 50 µl/well with Assay Buffer in a 96-well plate. We suggest testing several doses of your sample to make sure the readings are within the standard curve range. For optional Cathepsin G Positive Control use 2-5 µl and adjust volume to 50 µl.

3. Set Background Control

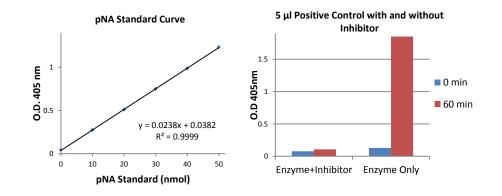
Dilute Cathepsin G Inhibitor 1:50 with Assay Buffer. Add 10 μ l Assay Buffer to one test sample and 10 μ l diluted Cathepsin G Inhibitor to the duplicated sample as the sample background control. Mix well and incubate for 10 min. at 37°C.

4. Substrate Solution Preparation:

38 µl Assay Buffer

2 μl Substrate

Add 40 μl Substrate Solution into each sample well (Do Not Add to Standard Curve Wells). Mix well.


- 5. **Measurement:** Read OD at 405 nm A_{S1} and A_{B1} at T₁. Read A_{S2} and A_{B2} again at T₂ after incubating the reaction at 37°C for 60 min, protected from light. The OD generated by hydrolyzation of substrate by Cathepsin G is $\Delta A = (A_{S2} A_{S1}) (A_{B2} A_{B1})$. It is recommended to read kinetically to choose the A_{S1} and A_{S2} in the linear range and which falls within the Standard Curve.
- 6. **Calculation:** Plot *p*NA Standard Curve, Apply the ΔA to the Standard Curve to get B nmol of *p*NA:

Activity =
$$\frac{B}{(T2-T1) \times V} \times \text{Sample Dilution Factor} = nmol/min/ml = mU/ml$$

Where: B is the *p*NA amount from Standard Curve (in nmol).

- T_1 is the time of the first reading (A_{s1} and A_{B1}) (in min).
- T_2 is the time of the second reading (A_{S2} and A_{B2}) (in min).
- V is the sample volume added into the reaction well (in ml).

Unit Definition: One unit is defined as the amount of Cathepsin G that hydrolyzes the substrate to yield 1.0 μ mol of *p*NA per minute at 37°C.

V. Related Products:

MMP family enzymes, human recombinant MMP-1 Inhibitor screening kit MMP FRET Substrate Elastase inhibitor screening kit DPPIV activity assay kit DPPIV inhibitors screening assay kit HDAC-8 activity assay kit MMP family Antibody MMP-3 inhibitor screening kit GM6001 Elastase Inhibitor, SPCK Sitagliptin Trichostatin HDAC-8, human recombinant

BioVision

GENERAL TROUBLESHOOTING GUIDE

Problems	Cause	Solution	
Assay not working	Cells did not lyse completely	Resuspend the cell pellet in the lysis buffer and incubate as described in the datasheet	
	Experiment was not performed at optimal time after	Perform a time-course induction experiment for apoptosis	
	apoptosis inductionPlate read at incorrect wavelength	Check the wavelength listed in the datasheet and the filter settings of the instrument	
High Background	Increased amount of cell lysate used	Refer to datasheet and use the suggested cell number to prepare lysates	
	Increased amounts of components added due to incorrect pinetting	Use calibrated pipettes	
	pipetting Incubation of cell samples for extended periods 	Refer to datasheet and incubate for exact times	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the individual components appropriately	
	Contaminated cells	Check for bacteria/ yeast/ mycoplasma contamination	
Lower signal levels	Cells did not initiate apoptosis	• Determine the time-point for initiation of apoptosis after induction (time-course experiment)	
	Very few cells used for analysis	Refer to datasheet for appropriate cell number	
	Use of samples stored for a long time	Use fresh samples or aliquot and store and use within one month for the assay	
	Incorrect setting of the equipment used to read samples	Refer to datasheet and use the recommended filter setting	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
Samples with erratic readings	Uneven number of cells seeded in the wells	Seed only equal number of healthy cells (correct passage number)	
	Samples prepared in a different buffer	Use the cell lysis buffer provided in the kit	
	Adherent cells dislodged and lost at the time of experiment	Perform experiment gently and in duplicates/triplicates; apoptotic cells may become floaters	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe efficiency of lysis under microscope	
	Samples used after multiple freeze-thaw cycles	Aliquot and freeze samples, if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot as needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Cell samples contain interfering substances	Troubleshoot if it interferes with the kit (run proper controls)	
General issues	Improperly thawed components	Thaw all components completely and mix gently before use	
	Incorrect incubation times or temperatures	Refer to datasheet & verify the correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
	Air bubbles formed in the well/tube	Pipette gently against the wall of the well/tubes	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
	Use of a different 96-well plate	Fluorescence: Black plates; Absorbance: Clear plates	
Note# The most probable cause is	listed under each section. Causes may overlap with other sections.		