

HDAC Activity Colorimetric Assay Kit

(Catalog #K331-100; 100 assays; Store kit at -80°C)

I. Introduction:

Inhibition of histone deacetylases (HDACs) has been implicated to modulate transcription and to induce apoptosis or differentiation in cancer cells. However, screening HDAC inhibitory compounds has proven to be difficult over the past due to the lack of convenient tools for analyzing HDAC activity. The new Colorimetric HDAC Activity Assay Kit provides a fast and convenient colorimetric method that eliminates radioactivity, extractions, or chromatography, as used in the traditional assays. The new method requires only two easy steps, both performed on the same microtiter plate. First, the HDAC colorimetric substrate, which comprises an acetylated lysine side chain, is incubated with a sample containing HDAC activity (e.g., HeLa nuclear extract or your own samples). Deacetylation of the substrate sensitizes the substrate, so that, in the second step, treatment with the Lysine Developer produces a chromophore. The chromophore can be easily analyzed using an ELISA plate reader or spectrophotometer. The assay is well suited for high throughput screening applications. HDAC inhibitors and antibodies are also available separately.

II. Kit Contents:

	K331-100		
Component	100 assays	Cap Color	Part Number
HDAC Substrate	500 μl	Amber	K331-100-1
10X HDAC Assay Buffer	1.0 ml	Green	K331-100-2
Lysine Developer	1.0 ml	Orange	K331-100-3
HDAC Inhibitor (Trichostatin A, 1 mM)	10 µl	Blue	K331-100-4
HeLa Nuclear Extract (5 mg/ml)	50 µl	Red	K331-100-5
Deacetylated Standard (10 mM)	20 µl	Yellow	K331-100-6

III. General Consideration:

- Read the entire protocol before beginning the procedure.
- The HeLa nuclear extract and Lysine Developer should be refreeze immediately at -20 or -70°C after each use to avoid loss of activity.
- If positive and negative controls are designed, the kit provides sufficient reagents for 5 positive control assays with the HeLa Nuclear Extract and 5 Negative Control assays with the HDAC Inhibitor, Trichostatin A.
- Using 96-well plates with U-shape bottom. Flat bottom may give a little low value.

IV. HDAC Assay Protocol:

- Dilute test samples (50-200 μg of nuclear extract or cell lysate) to 85 μl (final volume) of ddH₂0 in each well (For background reading, add 85 μl ddH₂0 only). For positive control, dilute 10 μl of HeLa nuclear extract with 75 μl ddH₂0. For negative control, dilute your sample into 83 μl of ddH₂0 and then add 2 μl of Trichostatin, or use a known sample containing no HDAC activity.
- 2. Add 10 μl of the 10X HDAC Assay Buffer to each well.
- 3. Add 5 μl of the HDAC colorimetric substrate to each well. Mix thoroughly.
- 4. Incubate plates at 37°C for 1 hour (or longer if desired).
- 5. Stop the reaction by adding 10 μl of Lysine Developer and mix well. Incubate the plate at 37°C for 30 min.
- Read sample in an ELISA plate reader at 400 or 405 nm. Signal is stable for several hours at room temperature. HDAC activity can be expressed as the relative O.D. value per μg protein sample.

V. Standard Curve (optional):

- 1. If desired, a standard curve can be prepared using the known amount of the Deacetylated Standard included in the kit. The exact concentration range of the Deacetylase Standard will vary depending on the each individual plate reader and the exact wavelength used. We recommend starting with a dilution range of 10-100 μ M in Assay Buffer.
- 2. Add 90 μ l each of the dilutions and also 10 μ l of the 10X Assay Buffer into a set of wells on the microtiter plate. Use 90 μ l of H₂O and 10 μ l of 10X Assay Buffer as zero
- 3. Add 10 μ l of Lysine Developer to each well and incubate at 37°C for 30 min (Note: Incubation time should be kept the same for both standard and test samples.)
- 4. Read samples in an ELISA plate reader at 400 or 405 nm.
- 5. Plot O.D. value (y-axis) versus concentration of the Deacetylated Standard (x-axis). Determine the slope as $\Delta O.D./\mu M$.
- 6. Based on the slope, you can determine the absolute amount of deacetylated lysine generated in your sample.

Fig. HDAC Activity Assay: Different amount of nuclear extract (NE) were tested following kit protocol in the presence and absence of HDAC Inhibitor (Incubated for 4 hrs).

RELATED PRODUCTS:

HDAC Fluorometric Assay kit	HDAC Drug Screening Kit
HDAc Inhibitors Set	HAT Activity Assay Kit
Histone H2A, H2B, H3 & H4 Antibodies	HDAC (1-11) Polyclonal Antibodies & Set

This product has been manufactured by BioVision, Inc., under a license granted by Cyclex Co., Ltd. Under the following patents: EP 1243658, US 7033778 & 7256013 and JP4267043.

FOR RESEARCH USE ONLY! Not to be used on humans.

BioVision

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution		
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature		
	Omission of a step in the protocol	Refer and follow the data sheet precisely		
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument		
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates		
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples		
	 Samples prepared in a different buffer 	Use the assay buffer provided in the kit or refer data sheet for instructions		
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope		
	 Samples used after multiple free-thaw cycles 	Aliquot and freeze samples if needed to use multiple times		
	Presence of interfering substance in the sample	Troubleshoot if needed		
	 Use of old or inappropriately stored samples 	Use fresh samples or store at correct temperatures until use		
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use		
	 Use of expired kit or improperly stored reagents 	Always check the expiry date and store the components appropriately		
	 Allowing the reagents to sit for extended times on ice 	Always thaw and prepare fresh reaction mix before use		
	 Incorrect incubation times or temperatures 	Refer datasheet & verify correct incubation times and temperatures		
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly		
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix		
	Pipetting errors in the standard	Avoid pipetting small volumes		
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible		
	Air bubbles formed in well	Pipette gently against the wall of the tubes		
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet		
	Calculation errors	Recheck calculations after referring the data sheet		
	Substituting reagents from older kits/ lots	Use fresh components from the same kit		
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting		
	Samples contain interfering substances	Troubleshoot if it interferes with the kit		
	Use of incompatible sample type	• Refer data sheet to check if sample is compatible with the kit or optimization is needed		
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range		
Note: The most probable list of cause	Note: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems.			