

Superoxide Dismutase (SOD) Activity Assay Kit

(Catalog #K335-100; 100 assays; Store kit at 4 °C)

I. Introduction:

Superoxide dismutase (SOD) is one of the most important antioxidative enzymes. It catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen. The sensitive SOD assay kit utilizes WST-1 that produces a water-soluble formazan dye upon reduction with superoxide anion. The rate of the reduction with a superoxide anion is linearly related to the Xanthine Oxidase (XO) activity, and is inhibited by SOD (below). Therefore, the inhibition activity of SOD can be determined by a colorimetric method.

II. Kit Contents:

Component	K335-100 100 assays	Cap Color	Part Number
WST Solution	1 ml	Red	K335-100-1
SOD Enzyme Solution	20 µl	Green	K335-100-2
SOD Assay Buffer	20 ml	WM	K335-100-3
SOD Dilution Buffer	10 ml	NM	K335-100-4

II. Reagent Preparation and Storage Conditions:

WST Working Solution: Dilute 1 ml of WST solution with 19 ml of SOD Assay Buffer Solution. The diluted solution is stable for up to 2 months at 4 °C.

SOD Enzyme Working Solution: Centrifuge the SOD Enzyme Solution for 5 sec. Mix well by pipetting (The step is necessary, as the enzyme has two layers and must be mixed well before dilution). Dilute 15 μ l with 2.5 ml of SOD Dilution Buffer. The diluted SOD enzyme solution is stable for up to 3 weeks at 4 °C.

III. Sample Preparation:

- Blood samples: Collect blood using citrate or EDTA. Centrifuge at 1,000 x g for 10 min at 4
 °C. Transfer the plasma layer to a new tube without disturbing the buffy layer and store at 80 °C until ready for analysis. Remove the buffy layer from the red cell pellet. Resuspend
 the erythrocytes in 5X volume of ice cold distilled water and centrifuge at 10,000 x g for 10
 min to pellet the erythrocyte membranes. Store the supernatant at -80 °C until ready for
 analysis. Plasma can be diluted approx. 3 10x and the red cell lysate diluted approx. 100X
 prior to SOD assay.
- Tissue and cells: Tissue should be perfused with PBS or 150 mM KCl to remove any red blood cells. Homogenize tissue or lyse cells in ice-cold 0.1 M Tris/HCl, pH 7.4 containing 0.5 % Triton X-100, 5 mM β-ME, 0.1 mg/ml PMSF. Centrifuge the crude tissue homogenate/cell lysate at 14000 x g for 5 minutes at 4 °C and discard the cell debris. The supernatant contains total SOD activity from cytosolic and mitochondria.

If it is desired to measure SOD activity from cytosol and mitochondria separately, cytosol and Mitochondria can be separated by using BioVision's Cat# K256-100 Mitochondrial/Cytosol Fractionation Kit. SOD activity is then measured from the Mitochondria and Cytosol fractions separately.

IV. SOD Assay Protocol:

*Refer to Table 1 for the amount of solution in each well. If you are using a SOD standard (not included with the kit), set up wells for it in the same manner as the sample.

- 1. Add 20 μI of Sample Solution to each sample and blank 2 well and add 20 μI H_2O to each Blank 1 and Blank 3 well (See Table I).
- 2. Add 200 µl of the WST Working Solution to each well.
- 3. Add 20 µl of Dilution Buffer to each Blank 2 and Blank 3 well.
- Add 20 µl of Enzyme Working solution to each sample and Blank 1 well, mix thoroughly. Note: Since the superoxide will release immediately after the addition of Enzyme working Solution to each well, use a multiple channel pipette to avoid reaction time lag of each well.
- 5. Incubate plates at 37 °C for 20 min.

SOD Activity (inhibition

- 6. Read the absorbance at 450 nm using a microplate reader.
- 7. Calculate the SOD activity (inhibition rate %) using the following equation.

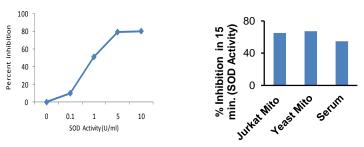

rate %) =
$$\frac{(A_{blank1} - A_{blank3}) - (A_{sample} - A_{blank2})}{(A_{blank1} - A_{blank2})} \times 100$$

Table 1: Amount of each solution for sample, blank1, 2, and 3

	sample	blank 1	blank 2	blank 3
Sample Solution	20 µl		20 µl	
ddH₂O		20 µl		20 µl
WST Working Solution	200 µl	200 µl	200 µl	200 µl
Enzyme Working Solution	20 µl	20 µl		
Dilution Buffer			20 µl	20 µl

Note: For specific activity of SOD, it is recommended to do a series 1/10th dilutions and obtain IC50 (μ g). SOD Activity (U/mg) = 1000/IC50 (μ g)

Unit Definition: One Unit is defined as the amount of SOD that inhibits the XO activity by 50% (IC50 (μ g)) under the assay conditions.

Figures: SOD Activity (% inhibition rate): human serum (10 µl) and isolated mitochondria from Jurkat cells (10 µg), and yeast (*Saccromyces cerevisiae*, 100 µg), was used to determine SOD Activity according to the kit protocol. Activity was measured in 15 min. at 37 °C.

FOR RESEARCH USE ONLY! Not to be used on humans.

sion.com

Problems	Cause	Solution	
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature	
	Omission of a step in the protocol	Refer and follow the data sheet precisely	
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument	
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates	
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples	
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope	
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot if needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix	
	Pipetting errors in the standard	Avoid pipetting small volumes	
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible	
	Air bubbles formed in well	Pipette gently against the wall of the tubes	
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet	
	Calculation errors	Recheck calculations after referring the data sheet	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Samples contain interfering substances	Troubleshoot if it interferes with the kit	
	Use of incompatible sample type	• Refer data sheet to check if sample is compatible with the kit or optimization is needed	
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range	

FOR RESEARCH USE ONLY! Not to be used on humans.