

Creatine Colorimetric/rituorometric Assay Kit

(Catalog #K635-100; 100 assays; Store Kit at -20°C)

I. Introduction:

Creatine is an endogenous compound whose function is to maintain a high ATP/ADP ratio, by way of its phosphorylated form and creatine kinase. Creatine supplementation has been used in the treatment of muscular, neurological and neurodegenerative diseases, as well as a sport performance enhancer. Detection of creatine level has wide applications in research and development. BioVision's Creatine Assay Kit provides an accurate, convenient measure of creatine in a variety of biological samples. In the assay, creatine is enzymatically converted to sarcosine which is then specifically oxidized to generate a product that converts a colorless probe to an intensely red color (λ_{max} = 570nm), and highly fluorescent (Ex/Em = 538/587 nm) product. Creatine is therefore easily detected by either colorimetric or fluorometric methods. Detection range 0.001 – 10 mM Creatine.

II. Kit Contents:

Components	K635-100	Cap Code	Part Number
Creatine Assay Buffer	25 ml	WM	K635-100-1
Creatine Probe (in DMSO)	0.2 ml	Red	K635-100-2A
Creatinase	Lyophilized	Blue	K635-100-4
Creatine Enzyme mix	Lyophilized	Green	K635-100-5
Creatine Standard (10 µmol)	Lyophilized	Yellow	K635-100-6

III. Reconstitution of Reagents:

- 1. Creatine Assay Buffer: Ready to use as supplied. It may be stored at 4°C or -20°C.
- Creatine Probe: ready to use as supplied. Warm to 18°C before use to melt frozen DMSO. Store at -20°C, protect from light and moisture. Stable for 2 months.
- 3. Creatinase, Creatine Enzyme mix: Reconstitute with 220 µl of Assay Buffer. Keep on ice during use. Store at -20 °C when not in use. Aliquot each and store until needed. Freeze/thaw should be limited to one time.
- **4. Creatine Standard:** Reconstitute with 100 μl of dH₂O to generate 100nmol/μl Creatine Standard. Dissolve completely. Store at -20°C, stable for 2 months.

IV. Assay Protocol:

1. Prepare Standard: Mix 10µl reconstituted creatine standard with 990 µl of Assay Buffer, mix to generate 1nmol/µl standard working solution. Add 0, 2, 4, 6,8,10 µl of the working solution to 6 consecutive wells. Bring the volume to 50 µl each well with Assay Buffer.

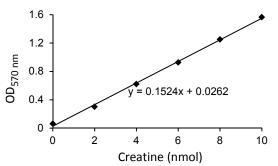
If a more sensitive method is desired, fluorescence assay can be utilized. Further dilute the standard 10-100 fold, and follow the same procedure as for the colorimetric assay.

Prepare Samples: High concentrations of proteins may interfere with the assay. Samples containing proteins may be filtered through a 10kDa MW cut-off filter (BioVision Cat. #1997-25) prior to assay. Add 0-50 µl of sample to the wells and bring the volume to 50 µl with Assay buffer.

Note: For unknown samples, we suggest testing several different dilutions to ensure the readings are in the linear range of the standard curve.

- **3. Prepare Reaction Mix:** Prepare enough reaction mix for the standard and samples. For each assay:
 - 44 μl Assay Buffer 2 μl Creatinase* 2 μl enzyme 2 μl probe

/13


 Mix well. Add 50 μl of the appropriate Reaction Mix to each standard and sample well, mix. Incubate at 37°C for 1 hr.

***Note:** Sarcosine gives background for the assay. For samples which may contain a significant amount of sarcosine, do a background control. Prepare a reaction without the creatinase (replacing the creatinase with 2 µl assay buffer).

- 5. Read the plate in a plate reader at 570 nm, or fluorescence at Ex/Em = 538/587nm.
- V. Calculations:
 - 1. Plot Standard Curve: Subtract reagent background from all readings. Plot readings vs. nmoles creatine.
 - **2. Determine sample Creatine concentrations:** Subtract the background reading from the creatine assay sample. Apply the creatine reading to the standard curve. Creatine concentration:

C = Sa/Sv nmol/µl, or mM

Where: Sa is the sample amount of unknown in nmol from your standard curve. Sv is the sample volume added to the well in micro-litter. Creatine Molecular Weight: 131.13.

Sarcosine Standard Curve: The assay is performed follow the kit procedure.

RELATED PRODUCTS:

Amino Acid Assay Kit	G
Sarcosine, Creatinine Assay Kit	G
Glutathione Assay Kit	С

Glucose, Galactose, lactose, sucrose Assay Kit Glutamate Assay Kit Choline Assay Kit

FOR RESEARCH USE ONLY! Not to be used on humans.

BioVision

/13

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature
	Omission of a step in the protocol	Refer and follow the data sheet precisely
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions
	Samples were not deproteinized (if indicated in datasheet)	Use the 10 kDa spin cut-off filter or PCA precipitation as indicated
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times
	Presence of interfering substance in the sample	Troubleshoot if needed, deproteinize samples
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures till use
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix
	Pipetting errors in the standard	Avoid pipetting small volumes
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible
	Air bubbles formed in well	Pipette gently against the wall of the tubes
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet
	Calculation errors	Recheck calculations after referring the data sheet
	Substituting reagents from older kits/ lots	Use fresh components from the same kit
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting
	Samples contain interfering substances	Troubleshoot if it interferes with the kit
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range
Note: The most probable list of cause	es is under each problem section. Causes/ Solutions may overlap v	with other problems.