



Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 info@gentaur.com

## Inosine Fluoromenic Assay Ric

(Catalog #K712-100; 100 Assays; Store kit at -20°C)

#### I. Introduction:

Inosine is commonly found in tRNAs and is essential for proper translation of the genetic code in wobble base pairs. Knowledge of inosine metabolism has led to advances in immunotherapy in recent decades. Inosine and hypoxanthine are also potential markers of ATP catabolic-byproducts from oxidative stress which follows acute cardiac ischemia. In BioVision's Inosine Assay Kit, inosine is converted to hypoxanthine, which will react with the substrate mix and PicoProbe™ to generate fluorescence (Ex/Em = 535/587 nm) in presence of converter and developer enzymes. This assay has a detection limit of of approximately 100 pmol inosine/well.

#### II. Kit Contents:

| Components                          | 100 assays | Cap Color | Part Number |
|-------------------------------------|------------|-----------|-------------|
| Inosine Assay Buffer                | 25 ml      | WM        | K712-100-1  |
| PicoProbe™                          | 0.4 ml     | Blue      | K712-100-2  |
| Converter Enzyme Mix (lyophilized)  | 1 vial     | Green     | K712-100-3  |
| Developer Enzyme Mix (lyophilized)  | 1 vial     | Brown     | K712-100-4  |
| Inosine Substrate Mix (lyophilized) | 1 vial     | Red       | K712-100-5  |
| Inosine Standard (10 mM)            | 50 µl      | Yellow    | K712-100-6  |

#### III. Storage and Handling:

Store kit at -20°C, protect from light. Allow reagents to warm to room temperature and briefly centrifuge vials prior to opening. Read the entire protocol before the assay.

#### IV. Reagent Preparation:

Converter Enzyme Mix, Developer Enzyme Mix, Inosine Substrate Mix: Dissolve in 220 µl Assay Buffer separately. Aliquot and store at -20°C. Avoid multiple freeze/thaw cycles. Use within two months.

#### V. Inosine Assay Protocol:

#### 1. Standard Curve Preparations:

Dilute the Inosine Standard to 50 µM by adding 5 µl of the Inosine Standard to 995 µl of Assay Buffer. Mix well. Add 0, 2, 4, 6, 8, 10 µl into each well individually. Adjust volume to 50 µl/well with Assay Buffer to generate generate 0, 0.1, 0.2, 0.3, 0.4, 0.5 nmol/well of the Inosine Standard.

#### 2. Sample Preparations:

Liquid samples can be assayed directly. For tissue or cell samples use 10 - 100 mg tissue or 5 million cells and homogenize in 0.7 ml of ice-cold 0.4 M perchloric acid then pellet for 5-10 min at 10 K x g. Collect the supernatant and neutralize with 10 µl of ice-cold 4 M K<sub>2</sub>CO<sub>3</sub> per 100 µl volume; keep on ice for 7-10 min. The pellets can be dissolved in 300 µl of 0.5 N NaOH and used for total protein analysis. Centrifuge the neutralized supernatant again as above and immediately freeze at -80°C until ready to analyze. Add 1 - 50 µl samples into duplicate wells of a 96-well plate and bring volume to 50 µl with Assay Buffer. For unknown samples, we suggest testing several doses of your sample to make sure the readings are within the standard curve range.

\*Note: Xanthine, Hypoxanthine and NADH in the sample will interfere with Inosine Assay. If significant amount of them are in your sample, include a sample background control by omitting the Converter Enzyme in the reaction mix.

3. Reaction Mix: Mix enough reagents for the number of assays to be performed: For each well, prepare a total 50 µl Reaction Mix containing:

| Reaction Mix |                  | Sam   | Sample Background Control |  |  |
|--------------|------------------|-------|---------------------------|--|--|
| 40 µl        | Assay Buffer     | 42 µl | Assay Buffer              |  |  |
| 4 µl         | PicoProbe™       | 4 µl  | PicoProbe™                |  |  |
| 2 µl         | Substrate Mix    | 2 µl  | Substrate Mix             |  |  |
| 2 µl         | Converter Enzyme |       |                           |  |  |
| 2 µl         | Developer Enzyme | 2 µl  | Developer Enzyme          |  |  |

Add 50 µl of the Reaction Mix to each well containing the Inosine Standard and test samples. and add 50 µl Sample Background Control to each background control well; mix well.

- 4. Incubate: The reaction for 30 minutes at 37°C, protected from light.
- 5. Measurement: Read the fluorescence at Ex/Em = 535/587 nm in a micro plate reader.
- 6. Calculation: Correct background by subtracting the value derived from the Sample Background Control from all sample readings (Note: The background reading can be significant and must be subtracted from sample readings). Subtract the 0 Inosine Standard from all Standards. Plot the Inosine Standard Curve. Apply the sample readings to the standard curve to calculate Inosine Concentration (C):

#### $C = (S_a/S_v) \text{ nmol/µl or mM}$

/14

40 µl

Where:  $S_a$  is the sample amount of unknown (in nmol) from standard curve.

 $S_v$  is sample volume (µI) added to the wells. Inosine MW is 268.23 g/mol



#### **RELATED PRODUCTS:**

Glutathione Assay Kit Lipid Peroxidation (MDA) Kit Hydrogen Peroxide Assay Kit GST Colorimetric Assay Kit GST Fluorometric Assay Kit Thioredoxin Reductase Activity Kit Myeloperoxidase (MPO) Colorimetric Assay Kit Myeloperoxidase (MPO) Fluorometric Assay Kit Uric Acid Assay Kit Xanthine Oxidase Activity Assay Kit Nitric Oxide Colorimetric Assay Kit Nitric Oxide Fluorometric Assay Kit

#### FOR RESEARCH USE ONLY! Not to be used on humans.

. ... ... ....

# **BioVision**



/14

### GENERAL TROUBLESHOOTING GUIDE:

| Problems                                                                                                                 | Cause                                                      | Solution                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Assay not working                                                                                                        | Use of ice-cold assay buffer                               | Assay buffer must be at room temperature                                                                |  |  |
|                                                                                                                          | Omission of a step in the protocol                         | Refer and follow the data sheet precisely                                                               |  |  |
|                                                                                                                          | Plate read at incorrect wavelength                         | Check the wavelength in the data sheet and the filter settings of the instrument                        |  |  |
|                                                                                                                          | Use of a different 96-well plate                           | Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters:<br>Clear plates |  |  |
| Samples with erratic readings                                                                                            | Use of an incompatible sample type                         | Refer data sheet for details about incompatible samples                                                 |  |  |
|                                                                                                                          | Samples prepared in a different buffer                     | Use the assay buffer provided in the kit or refer data sheet for instructions                           |  |  |
|                                                                                                                          | Samples were not deproteinized (if indicated in datasheet) | Use the 10 kDa spin cut-off filter or PCA precipitation as indicated                                    |  |  |
|                                                                                                                          | Cell/ tissue samples were not completely homogenized       | Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope             |  |  |
|                                                                                                                          | Samples used after multiple free-thaw cycles               | Aliquot and freeze samples if needed to use multiple times                                              |  |  |
|                                                                                                                          | Presence of interfering substance in the sample            | Troubleshoot if needed, deproteinize samples                                                            |  |  |
|                                                                                                                          | Use of old or inappropriately stored samples               | Use fresh samples or store at correct temperatures till use                                             |  |  |
| Lower/ Higher readings in Samples and Standards                                                                          | Improperly thawed components                               | Thaw all components completely and mix gently before use                                                |  |  |
|                                                                                                                          | Use of expired kit or improperly stored reagents           | Always check the expiry date and store the components appropriately                                     |  |  |
|                                                                                                                          | Allowing the reagents to sit for extended times on ice     | Always thaw and prepare fresh reaction mix before use                                                   |  |  |
|                                                                                                                          | Incorrect incubation times or temperatures                 | Refer datasheet & verify correct incubation times and temperatures                                      |  |  |
|                                                                                                                          | Incorrect volumes used                                     | Use calibrated pipettes and aliquot correctly                                                           |  |  |
| Readings do not follow a linear pattern for Standard curve                                                               | Use of partially thawed components                         | Thaw and resuspend all components before preparing the reaction mix                                     |  |  |
|                                                                                                                          | Pipetting errors in the standard                           | Avoid pipetting small volumes                                                                           |  |  |
|                                                                                                                          | Pipetting errors in the reaction mix                       | Prepare a master reaction mix whenever possible                                                         |  |  |
|                                                                                                                          | Air bubbles formed in well                                 | Pipette gently against the wall of the tubes                                                            |  |  |
|                                                                                                                          | Standard stock is at an incorrect concentration            | Always refer the dilutions in the data sheet                                                            |  |  |
|                                                                                                                          | Calculation errors                                         | Recheck calculations after referring the data sheet                                                     |  |  |
|                                                                                                                          | Substituting reagents from older kits/ lots                | Use fresh components from the same kit                                                                  |  |  |
| Unanticipated results                                                                                                    | Measured at incorrect wavelength                           | Check the equipment and the filter setting                                                              |  |  |
|                                                                                                                          | Samples contain interfering substances                     | Troubleshoot if it interferes with the kit                                                              |  |  |
|                                                                                                                          | Use of incompatible sample type                            | • Refer data sheet to check if sample is compatible with the kit or optimization is needed              |  |  |
|                                                                                                                          | Sample readings above/below the linear range               | Concentrate/ Dilute sample so as to be in the linear range                                              |  |  |
| Note: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems. |                                                            |                                                                                                         |  |  |

. .