Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 info@gentaur.com

Lipase Activity Fluorometric Assay Kit III

(Catalog #K724-100; 100 assays; Store kit at -20°C)

I. Introduction:

Lipase is a subclass of the esterases that catalyze the hydrolysis of ester bonds of lipid substrates. Lipases perform essential roles in the digestion, transport and processing of dietary lipids (e.g. triglycerides, fats, oils) in most, if not all, living organisms. In humans, pancreatic lipase is the key enzyme responsible for breaking down fats in the digestive system by converting triglycerides to monoglycerides and free fatty acids. During the damage of the pancreas, lipase levels can rise 5- to 10-fold within 24 to 48 hours. In BioVision's Lipase Assay Kit III, Lipase hydrolyzes a specific substrate to generate the methylresorufin, which can be detected fluorometrically at Ex/Em = 529/600 nm. The kit provides a rapid, simple, more sensitive, and reliable test suitable for high throughput assay of Lipase activity. This kit can be used to detect Lipase as low as 0.1 µU/well.

II. Kit Contents:

Components	100 assays	Cap Code	Part Number
Lipase Assay Buffer	25 ml	WM	K724-100-1
Lipase Substrate	200 µl	Red	K724-100-2
Methylresorufin Standard (0.1 mM)	40 µl	Yellow	K724-100-3
Lipase Positive Control (lyophilized)	1 vial	Purple	K724-100-4

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow Assay Buffer to warm to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay.

IV. Reagent preparation:

Lipase Positive Control: Reconstitute with 100 μ l assay buffer. Mix 2 μ l Positive Control with 998 μ l Lipase Assay Buffer; add 2 μ l of the diluted Positive Control into a well and adjust the volume to 50 μ l/well with Lipase Assay Buffer. Discard the remaining diluted Positive Control after each use. Aliquot and store the reconstituted Positive Control solution at -20°C. Use within two months.

V. Lipase Assay Protocol:

1. Standard Curve Preparation:

Add 10 μ l of the 0.1mM Methylresorufin Standard to 90 μ l Lipase Assay Buffer to generate a 10 μ M standard solution. Add 0, 2, 4, 6, 8, 10 μ l to each well individually. Adjust the volume to 100 μ l/well with Lipase Assay Buffer to generate 0, 20, 40, 60, 80, 100 pmol/well of Methylresorufin Standard. Read fluorometrically at Ex/Em = 529/600nm.

2. Sample Preparations:

Tissues (50 mg) or cells (1×10^6) can be homogenized in ~ 200 μ l ice-cold Lipase Assay Buffer then centrifuged to remove insoluble material at 13,000 x g, 10 min. Serum sample can be directly diluted in the Lipase Assay Buffer. Prepare test samples of up to 50 μ l/well with Lipase Assay Buffer in a 96-well plate. We suggest testing several doses of your sample to make sure the readings are within the standard curve range.

 Reaction Mix: Mix enough reagents for the number of assays to be performed. For each well, prepare a total 50 µl Reaction Mix.

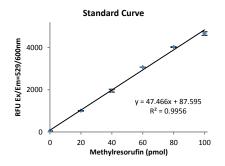
48 µl Assay Buffer

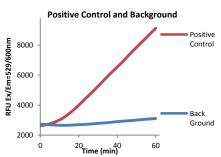
2 µl Lipase substrate

Add 50 μ l of the Reaction Mixes to each well containing the samples and positive controls. Mix well. Include a reagent background control by adding 50 μ l assay buffer to 50 μ l reaction mix into a well.

- 4. **Measurement:** Read Ex/Em = 529/600nm R_1 for sample and R_{1B} for background control at T_1 . Read R_2 for sample and R_{2B} for background control again at T_2 after incubating the reaction at 37°C for 30 60 min (or incubate longer time if the Lipase activity is low), protect from light. The fluorescence generated by the hydrolysis of the Lipase substrate is Δ RFU = $(R_2 R_{2B}) (R_1 R_{1B})$. It is recommended to read the fluorescence kinetically to choose the R_1 and R_2 within the linear range of the standard curve.
- 5. Calculation: Subtract the 0 Standard from all Standard readings. Plot the Standard Curve. Apply the ΔRFU to the standard curve to get B nmol of methylresorufin (amount of methylresorufin generated between T₁ and T₂ in the reaction wells):

Lipase Activity = $\frac{B}{(T2-T1)\times V}$ ×Sample Dilution Factor = nmol/min/ml = mU/ml


Where: B is the methylresorufin amount from Standard Curve (in nmol).


 T_1 is the time of the first reading (R_1) (in min).

 T_2 is the time of the second reading (R_2) (in min).

V is the pretreated sample volume added into the reaction well (in ml).

Unit Definition: One unit is defined as the amount of enzyme that hydrolyzes the substrate to yield 1.0 μ mol of methylresorufin per minute at 37°C.

RELATED PRODUCTS:

Lipase Assay Kit I and II Glucose Assay Kit Pyruvate Assay Kit Creatine Assay Kit Triglyceride Assay Kit Fatty Acid Assay Kit Uric Acid Assay Kit Lactate Assay Kit I/II Creatinine Assay Kit Free Glycerol Assay Kit

FOR RESEARCH USE ONLY! Not to be used on humans.

Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 info@gentaur.com

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature
	Omission of a step in the protocol	Refer and follow the data sheet precisely
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument
	Use of a different 96-well plate	• Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times
	Presence of interfering substance in the sample	Troubleshoot if needed
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix
	Pipetting errors in the standard	Avoid pipetting small volumes
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible
	Air bubbles formed in well	Pipette gently against the wall of the tubes
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet
	Calculation errors	Recheck calculations after referring the data sheet
	Substituting reagents from older kits/ lots	Use fresh components from the same kit
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting
	Samples contain interfering substances	Troubleshoot if it interferes with the kit
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range
Note: The most probable list of cause	es is under each problem section. Causes/ Solutions may overlap v	vith other problems.