

Protease Activity Fluorometric Assay Kit

(Catalog #K781-100; 100 assays; Store kit at -20°C)

I. Introduction:

Proteases are naturally present in all organisms. These enzymes are involved in a multitude of physiological reactions from simple digestion of food proteins to highly regulated cascades. Proteases can either break specific peptide bonds (*limited proteolysis*), depending on the amino acid sequence of a protein, or break down a complete peptide to amino acids (*unlimited proteolysis*). The activity can be a destructive change (abolishing a protein's function), an activation of a function (preform to mature form) or it can be a signal in a signaling pathway. BioVision's Protease Activity Assay Kit is designed for the quantitative determination of proteases present in the protein sample. The assay uses fluorescein isothiocyanate (FITC)-labeled casein as a general protease substrate. The fluorescein label on the FITC-Casein is highly quenched. Upon digestion by proteases present in the sample the FITC-Casein substrate is cleaved into smaller peptides which abolish the quenching of the fluorescence label. The fluorescence of the FITC-labeled peptide fragments is measured at Ex/Em=485/530 nm. The kit is supplied with our Mass Spectrometry Grade (MSG), chemically stabilized Trypsin for use as a general protease control. However, other protease standard controls can also be used. This kit is easy to use and can detect <500 pg/well Trypsin present in the sample.

II. Kit Contents:

Components	100 assays	Cap Color	Part Number
Protease Assay Buffer	25 ml	WM	K781-100-1
Protease Substrate (lyophilized)	1 vial	Red	K781-100-2
FITC Standard (25 μM)	200 µl	Yellow	K781-100-3
Positive Control (lyophilized)	1 vial	Green	K781-100-4

III. Reagent Preparation and Storage Conditions:

Substrate: Reconstitute with 220 µl dH₂O. Pipette up and down to completely dissolve. Store at -20°C. Use within two months.

Positive Control: Reconstitute with 100 µl Assay Buffer. Pipette up and down to completely dissolve. Aliquot and store at -20°C. Use within two months. Avoid freeze/thaw cycles.

IV. Protease Assav Protocol:

1. Standard Curve Preparations:

Add 0, 2, 4, 6, 8, 10 µl FITC Standard into a series of standards wells. Adjust the final volume to 100 µl/well with Assay Buffer to generate 0, 0.05, 0.1, 0.15 0.2, and 0.25 nmol/well of the FITC Standard.

2. Sample and Positive Control Preparations:

Tissues or cells can be extracted with 4 volumes of the Assay Buffer, centrifuge to remove insoluble material and get a clear extract. Prepare test samples at 50 μ l/well with Assay Buffer in a 96-well plate. Serum can be directly added into sample wells, and the volume adjusted to 50 μ l/well with Assay Buffer. We suggest using several doses of your sample to ensure the readings are within the linear range. For Positive Control, add 5 μ l Positive Control solution to wells and adjust volume to 50 μ l/well with Assay Buffer. Include a reagent background control which only contains 50 μ l of Assay Buffer.

3. Reaction Mix:

Mix enough reagents for the number of assays to be performed. For each well, prepare 50 μ l of Reaction Mix containing:

Assay Buffer 48 µl Substrate 2 µl

Add 50 µl of the Reaction Mix to each well containing Positive Controls, reagent background control and test samples. Mix well. (DO NOT ADD TO STANDARDS)

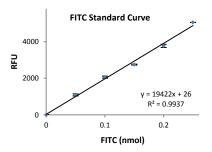
4. Measurement: Read Ex/Em=485/530 nm R₁ at T₁ then read R₂ at T₂ after incubating the reaction at 25°C for 60 min, protected from light (or incubate longer if the sample activity is low). The fluorescence of the unquenched FITC generated by proteolytic digestion of the substrate is ΔRFU = R₂ - R₁.

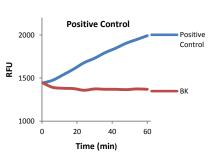
Note: A. It is essential to read R_1 and R_2 in the reaction linear range. It will be more accurate if you read the reaction kinetics, then choose R_1 and R_2 in the reaction linear range. **B.** Since the assay is a fluorescence quenching assay, the background reading is high, but sample reading are consistent.

5. Calculation: Subtract 0 Standard from all Standard readings. Plot the FITC Standard Curve. Apply the ΔRFU to the FITC Standard Curve to get B nmol of FITC (amount of unquenched FITC generated between T₁ and T₂ in the reaction wells).

Protease Activity = $\frac{B}{(T2-T1)\times V}$ × Sample Dilution Factor = nmol/min/ml = mU/ml

Where: **B** is the FITC amount from FITC Standard Curve (in nmol).


 T_1 is the time of the first reading (R_1) (in min).


rev. 03/18

 T_2 is the time of the second reading (R_2) (in min).

V is the pretreated sample volume added into the reaction well (in ml).

Unit Definition: One unit is defined as the amount of protease that cleaves the substrate, to yield an amount of fluorescence equivalent to 1.0 μ mol of unquenched FITC per minute at 25°C.

RELATED PRODUCTS:

Trypsin Activity Assay Kit

Protease Inhibitor Cocktail

EZBlock™ Protease Inhibitor Cocktail. EDTA-Free

EZBlock™ Protease Inhibitor Cocktails II thru IV

EZBlock™ Universal Protease and Phosphatase Inhibitor Cocktail, EDTA-Free

EZBlock™ Universal Protease and Phosphatase Inhibitor Cocktail

Protease Inhibitors

Proteases

- Caspase
- Cathepsins
- Calpain
- MMPs
- Granzvme B

FOR RESEARCH USE ONLY! Not to be used on humans.

rev. 03/18

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution	
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature	
	Omission of a step in the protocol	Refer and follow the data sheet precisely	
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument	
	Use of a different 96-well plate	• Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates	
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples	
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions	
	Cell/ tissue samples were not completely homogenized	 Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope 	
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot if needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix	
	Pipetting errors in the standard	Avoid pipetting small volumes	
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible	
	Air bubbles formed in well	Pipette gently against the wall of the tubes	
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet	
	Calculation errors	Recheck calculations after referring the data sheet	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Samples contain interfering substances	Troubleshoot if it interferes with the kit	
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed	
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range	
Note: The most probable list of caus	Sample readings above/below the linear range s is under each problem section. Causes/ Solutions may overlan.		

Note: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems.