

α-Glucosidase Inhibitor Screening Kit (Colorimetric)

06/18

(Catalog # K938-100; 100 assays; Store at -20°C)

I. Introduction:

 α -Glucosidase (EC 3.2.1.20) is localized in the brush border of the small intestine and is responsible for the enzymatic hydrolysis of 1,4-linked polysaccharides, producing glucose as one of the main products. Due to the vital role of glucose as one of the main sources of energy in eukaryotes, α -Glucosidase is a target for the modulation of postprandial hyperglycemia. α -Glucosidase Inhibitors (AGIs) such as Acarbose, Miglitol and Voglibose are anti-diabetic medicines that help to reduce post-meal blood glucose levels by arresting glucose absorption in the gastrointestinal tract. In addition, recent research is also focused on the discovery of natural products that could act as α -Glucosidase Inhibitors. BioVision's α -Glucosidase Inhibitor Screening Kit can be used to screen potential inhibitors of this enzyme. It utilizes the ability of an active α -Glucosidase to cleave a synthetic substrate thus, releasing a chromophore (OD: 410 nm). In the presence of an α -Glucosidase specific inhibitor, the enzymatic activity is greatly reduced which is detected by a decrease of absorbance readings. The assay kit provides a rapid, simple and reliable test for high-throughput screening of α -Glucosidase inhibitors.

II. Applications:

Screening/characterizing α-Glucosidase inhibitors

III. Kit Contents:

Components	K938-100	Cap Code	Part Number
α-Glucosidase Assay Buffer	25 ml	WM	K938-100-1
α-Glucosidase Substrate Mix	300 µl	Amber	K938-100-2
α-Glucosidase	1 vial	Blue	K938-100-3
Acarbose	140 µl	Red	K938-100-4

IV. User Supplied Reagents and Equipment:

- 96-well clear plate with flat bottom
- Temperature-controlled plate reader

V. Storage Conditions and Reagent Preparation:

Store kit at -20 °C, protect from light. Briefly centrifuge small vials prior to opening.

- α-Glucosidase Assay Buffer: Warm to room temperature before use. Store at 4°C or -20°C.
- α-Glucosidase Substrate Mix: Ready to use as supplied. If precipitate is observed, briefly sonicate contents. Store at -20°C.
- α-Glucosidase: Reconstitute with 100 μl dH₂O to prepare stock solution. Aliquot Stock Solution in 10 μl aliquots and store at -20 °C. Use aliquot only once. Once aliquoted use within two months.
- Acarbose: Ready to use. Keep on ice while in use. Use within two months.

VI. α-Glucosidase Inhibitor Screening Protocol:

1. Screening Compounds, Inhibitor Control & Background Control preparations: Samples [S] and Inhibitor Control [IC]: Dissolve test samples to 100X in a proper solvent. Further dilute to 10X using α-Glucosidase Assay Buffer. Add 10 μl of Diluted test compound, 10 μl of Acarbose into wells of 96-well clear plate designated as test samples [S] or Inhibitor Control [IC], respectively. Enzyme Control [EC] and Background Control [BC]: Add 10 and 20 μl of α-Glucosidase Assay Buffer into designated well(s) of 96-well clear plate, respectively. IC₅₀ estimation (Optional): prepare several dilutions of candidate(s) in α-Glucosidase Assay Buffer. Add 10 μl of each dilution into designated wells.

Note: Various organic solvents may reduce the α -Glucosidase enzymatic activity. Prepare parallel well(s) as Solvent Control [SC] to test the effect of the solvent on α -Glucosidase activity. If [SC] slope is significantly different when compared to EC, use [SC] values to determine effect of the respective tested compound (see Step 5).

	[S]	[IC]	[EC]	[BC]	[SC]
Test Sample	10 µl	-	-	-	-
Acarbose	-	10 µl	-	-	-
α-Glucosidase Assay Buffer	-	-	10 µl	20 µl	-
Solvent Control	-	-	-	-	10 µl

2. α-Glucosidase Enzyme Solution Preparation: Prepare a 20-fold dilution of α-Glucosidase (i.e. Dilute of 2 μl of α-Glucosidase with 38 μl of α-Glucosidase Assay Buffer), mix thoroughly and keep on ice. Add 10 μl of Diluted α-Glucosidase Enzyme Solution to each well containing Test Sample(s) [S], Inhibitor Control [IC], Enzyme Control [EC] and Solvent Control [SC]. Adjust the volume of each well to 80 μl/well with α-Glucosidase Assay Buffer. Mix well and incubate at room temperature for 15-20 min. Protect from light.

Note: Do not store Diluted α -Glucosidase Enzyme Solution. Discard unused solution.

F. C. M. L. D. L. M. L. C. OF 05 MGA LT. (100) 100 T. (100) 100 I. (100) I. (10

Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 info@gentaur.com

3. Reaction Mix Preparation: Mix enough reagents for the number of assays to be performed. For each well, prepare 20 µl Reaction Mix containing:

	Reaction Mix
α-Glucosidase Assay Buffer	17 µl
α-Glucosidase Substrate Mix	3 µl

Mix & add 20 µl Reaction Mix to test sample(s) [S], Inhibitor Control [IC], Enzyme Control [EC], Solvent Control [SC] and Background Control [BC] wells and mix well.

- **4. Measurement:** Measure absorbance immediately at OD: 410 nm in kinetic mode for 60 min at room temperature. Choose two time points (t₁ & t₂) in the linear range of the plot and obtain the corresponding values for the absorbance (OD₁ and OD₂).
- **5. Calculation:** Calculate the slope for all test samples [S], Enzyme Control [EC], Solvent Control [SC] and Background Control [BC] by dividing the net ΔOD (A₂-A₁) values with the time Δt (t₂-t₁). Subtract the Slope of Background Control from [S], [EC] and [SC]. If [SC] slope is significantly different when compared to [EC], use [SC] values to determine effect of tested compound.

% Relative Inhibition =
$$\frac{\text{Slope of [EC]} - \text{Slope of [S]}}{\text{Slope of [EC]}} \times 100$$

% Relative Activity =
$$\frac{\text{Slope of } [S]}{\text{Slope of } [EC]}$$
 X100

Figure: Inhibition of α-Glucosidase activity by Acarbose. IC₅₀ of Acarbose was calculated to be 0.74 ± 0.15 mM. Assay was carried out following the kit protocol.

VII. RELATED PRODUCTS:

α-Glucosidase Activity Colorimetric Assay Kit (K690) Starch Colorimetric/Fluorometric Assay Kit (K647)

Glucose and Sucrose Colorimetric/Fluorometric Assay Kit (K616)

Glucose Colorimetric Assay Kit II (K686)

Glucose-6-phosphate Dehydrogenase Assay Kit (K757)

Glucose Uptake Colorimetric Assay Kit (K676)

Glycogen Colorimetric/Fluorometric Assay Kit (K646)

Hexokinase Colorimetric Assay Kit (K789)

Maltose Colorimetric/Fluorometric Assay Kit (K628)

Total Carbohydrate Assay Kit (K645)

Amylase Activity Colorimetric Assay Kit (K711) Glucose Colorimetric/Fluorometric Assay Kit (K666)

PicoProbe[™] Glucose Fluorometric Assay Kit (K688)

Glucose Dehydrogenase Activity Assay Kit (K786)

PicoProbe™ Glucose-6-Phosphate Fluorometric Assay Kit (K687)

Glucose Uptake Fluorometric Assay Kit (K666)

Glycogen Colorimetric Assay Kit II (K648)

PicoProbe[™] Glucokinase Activity Assay Kit (K969)

Maltose & Glucose Colorimetric/Fluorometric Assay Kit (K618)

PicoProbeTM Glucose-6-Phosphate Assay Kit (K687)

FOR RESEARCH USE ONLY! Not to be used on humans.