BioVision

H3K9me2 Antibody

ALTERNATE NAMES:
Histone H3
CATALOG \#: 6814-25

AMOUNT:
HOST/ISOTYPE:
IMMUNOGEN:

FORM:
FORMULATION:
PURIFICATION:
SPECIES REACTIVITY:

Human, mouse.
STORAGE CONDITIONS: Store at $-20^{\circ} \mathrm{C}$; for long storage, store at $-80^{\circ} \mathrm{C}$. Avoid multiple freeze-thaw cycles

DESCRIPTION: Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class $\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3$ and H 4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called "histone code". Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Dimethylation of histone H3K9 is more present in silent genes.

APPLICATION: WB: 1:1000, ELISA: 1:1000, Dot Blot: 1:20,000, IF: $1: 500$, ChIP: $2 \mu \mathrm{~g} / \mathrm{ChIP}$.
Note: This information is only intended as a guide. The optimal dilutions must be determined by the user.

NIH3T3 cells were stained with the antibody and with DAPI. The cells were labeled with the antibody (left) followed by an anti-rabbit antibody conjugated to Alexa488. The middle pane shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right.

ChIP assays were performed using HeLa cells and the antibody and optimized PCR primer sets for qPCR. A titration of the antibody consisting of 1, 2, 5 , and $10 \mu \mathrm{l}$ per ChIP experiment was analysed. $\operatorname{IgG}(5 \mu \mathrm{~g} / \mathrm{IP})$ was used as negative control. The Fig shows the recovery, expressed as a \% of input (the relative amount of IP DNA compared to input DNA after qPCR analysis).

HeLa cells extracts $(15 \mu \mathrm{~g})$ were analysed by WB blot using the antibody. The molecular weight marker is shown on the left; the location of the protein of interest is indicated on the right.

RELATED PRODUCTS:

- H3R17me2 Antibody (Cat \# 6803-50)
- H3K9me1 Antibody (Cat \# 6804-50)
- H3K36me2 Antibody (Cat \# 6805-50)
- H3 Pan Antibody (Cat \# 6806-50)
- H4K8ac Antibody (Cat \# 6807-50)

To determine the titer, an ELISA was performed using a serial dilution of the antibody. The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution the titer of the antibody was estimated to be 1:103,000.

A Dot Blot analysis was performed to test the cross reactivity of the antibody with peptides containing other modifications of histone H3 and the unmodified H3K9 sequence. 100 to 0.2 pmol of the peptide containing the respective histone modification were spotted on a membrane. The Fig shows a high specificity of the antibody for the modification of interest.

Gentaur

