rev.03/10

For research use only

JC-1

(5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine lodide)

CATALOG #: 1130-5 **AMOUNT:** 5 mg

STRUCTURE:

MOLECULAR FORMULA: $C_{25}H_{27}CI_4IN_4$ MOLECULAR WEIGHT: 652.23

APPEARANCE: Brown-red solid

SOLUBILITY: Soluble in DMSO and DMF

PURITY: >98% by HPLC

STORAGE CONDITION: Store at -20° C, protected from light. **EXTINCTION COEFFICIENT:** $\mathcal{E} = 190,000 \, \text{M}^{-1} \, \text{cm}^{-1} \, (505 \, \text{nm}; \text{ in MeOH})$

APPLICATION:

JC-1 is a mitochondrial dye that stains mitochondria in living cells in a membrane potential-dependent fashion. JC-1 monomer is in equilibrium with so called J-aggregates, which are favored at higher mitochondrial membrane potential. The monomer JC-1 has green fluorescence ($\lambda_{em}=527$ nm), while the J-aggregates have red fluorescence ($\lambda_{em}=590$ nm). Therefore, it has been possible to use fluorescence ratioing technique to study mitochondrial membrane potential. JC-1 is particularly useful for apoptosis studies. In apoptotic cells, the dye stays in the cytoplasm and fluoresces green, while in healthy cells, the dye aggregates in the mitochondria and fluoresces red.

REFERENCES:

- 1. Smiley, S.T., et al. (1991) PNAS 88:3671.
- 2. Reers, M., et al. (1991) Biochemistry 30:4480.

FOR RESEARCH USE ONLY! Not to be used in humans!

SUGGESTED WORKING CONCENTRATIONS:

Table 1. JC-1 cell staining conditions.

Cell Type	Adherent or Dissociated	Incubation Conditions			Analysis Method
		Dye Concentration	Temperature	Time	
Neurons (rat) 1	Adherent	2.0 μg/mL	37°C	20-30 min	Confocal microscope
Neurons (rat) ²	Adherent	1.0 μg/mL	37°C	20 min	Confocal microscope
Human diploid fibroblasts ³	Adherent	0.3 μg/mL	37°C	10 min	Confocal microscope
O-2A oligodendrocytes (rat) ⁴	Adherent	10 μg/mL	37°C	10 min	Wide-field microscope
PC12 ⁵	Adherent	10 µg/mL	37°C	10 min	Confocal microscope
Colo-205 ⁶	Dissociated	10 μg/mL	37°C	10 min	Flow cytometer
U937 ⁷	Dissociated	10 μg/mL	22°C	10 min	Flow cytometer
Cardiac myocytes (rat) ⁸	Dissociated	10 μg/mL	37°C	10 min	Wide-field microscope

1. J Neurosci 16, 5688 (1996); 2. Neuron 15, 961 (1995); 3. Am J Physiol 274, C615 (1998); 4. J Physiol 508, 413 (1998); 5. Neuronal precursor cell line, J Neurosci 18, 932 (1998); 6. Human colon adenocarcinoma, J Cell Biol 138, 449 (1997); 7. Human premonocytic cell line, Proc Natl Acad Sci USA 93, 6458 (1996), Biochem Biophys Res Comm 197, 40 (1993); 8. J Physiol 486, 1 (1995).

RELATED PRODUCTS:

- Apoptosis Detection Kits & Reagents
- Cell Fractionation System
- Cell Proliferation & Senescence
- Cell Damage & Repair
- Signal Transduction
- Adipocyte & Lipid Transfer
- Molecular Biology & Reporter Assays
- Growth Factors and Cytokines
- Monoclonal and Polyclonal Antibodies