TC-E 5002

ALTERNATE NAME:	3-[9-cyclopropylnonanoyl(hydroxy)amino]propanoic acid; N -(9-Cyclopropyl-1-oxononyl)-N-hydroxy-beta- alanine; 3 -(9-cyclopropyl-N-hydroxynonanamido)propanoic acid
CATALOG \#:	B2856-1 $\quad 1 \mathrm{mg}$ B2856-5 $\quad 5 \mathrm{mg}$

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{4}$
MOLECULAR WEIGHT:	285.38
CAS NUMBER:	1453071-47-0
APPEARANCE:	A crystalline solid
PURITY:	$\geq 98 \%$
SOLUBILITY:	$\sim 30 \mathrm{mg} / \mathrm{ml}$ in DMSO $\sim 50 \mathrm{mg} / \mathrm{ml}$ in Ethanol $\sim 10 \mathrm{mg} / \mathrm{ml}$ in DMF $\sim 0.25 \mathrm{mg} / \mathrm{ml}$ in PBS, pH 7.2

DESCRIPTION: TC-E 5002 is an inhibitor of the histone lysine demethylase (KDM) subfamily KDM2/7. It potently inhibits KDM2A, KDM7A and KDM7B with an IC_{50} of $6.8 \mu \mathrm{M}, 0.2 \mu \mathrm{M}$ and $1.2 \mu \mathrm{M}$ respectively. It inhibits the growth of KYSE150 and HeLa cells with GI_{50} values of $16 \mu \mathrm{M}$ and $40 \mu \mathrm{M}$ respectively and arrests cells in the $\mathrm{G}_{0} / \mathrm{G}_{1}$ phase of the cell cycle. It inhibits demethylation of H 3 K 27 me 2 at similar concentrations.

STORAGE TEMPERATURE: $-20^{\circ} \mathrm{C}$

HANDLING:	Do not take internally. Wear gloves and mask when handling the product! Avoid contact by all modes of exposure.
REFERENCE:	Suzuki, T., Ozasa, H., Itoh, Y., et al. Identification of the KDM2/7 histone lysine demethylase subfamily inhibitor and its antiproliferative activity. J. Med. Chem. 56(18), 7222-7231 (2013).

RELATED PRODUCTS:

HDM Inhibitor, 2,4-PDCA (Cat. No. 2304)
RN 1 dihydrochloride (Cat. No. B2080)
Lysine-specific Demethylase Inhibitor (1C) (Hydrochloride) (Cat. No. B2814)
DDP-38003 dihydrochloride (Cat. No. B1958)
2,4-Pyridinedicarboxylic Acid (Cat. No. B2809)

DISCLAIMER:
FOR RESEARCH USE ONLY! Not to be used on humans.

