

980 Linda Vista Avenue Mountain View, CA 94043 USA Phone: (650)428-0236 Fax: (650)428-0336

p38β, Active

Full-length recombinant protein expressed in Sf9 cells

Catalog # 7763-5, -100

>90%
-80°C
in Dry ice
6-12 months from shipping date
5 μg and 100 μg
0.1 μg/μl
123 nmol/ min/ mg

Product Description

Recombinant full-length human p38beta was expressed by baculovirus in Sf9 insect cells using a N-terminal GST tag. The gene accession number is <u>NM 002751</u>.

Gene Aliases

MAPK11; SAPK2; p38-2; PRKM11; SAPK2B; p38b; P38b2

Formulation

Recombinant protein stored in 50mM Tris-HCI, pH 7.5, and 150mM NaCI, 0.25mM DTT, 0.1mM EGTA, 0.1mM EDTA, 0.1mM PMSF, 25% glycerol.

Storage and Stability

Store product at -70° C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles.

Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 info@gentaur.com

Scientific Background

p38-beta is a member of the p38 MAP kinase family and is activated by both proinflammatory cytokines and environmental stress (1). The p38-beta is activated through its phosphorylation by MAP kinase kinases (MKKs), preferably by MKK6. Transcription factor ATF2/CREB2 has been shown to be a substrate of this kinase (2). Alternatively spliced transcript variants encoding the same protein have been observed. **References**

References

- 1. Jiang, Y. et al: Characterization of the structure and function of a new mitogen-activated protein kinase (p38-beta). *J. Biol. Chem.* 271: 17920-17926, 1996.
- Stein, B. et al: p38-2, a novel mitogen-activated protein kinase with distinct properties. J. Biol. Chem. 272: 19509-19517, 1997.

Specific Activity

The specific activity of P38BETA was determined to be **123 nmol** / min/mg asper activity assay protocol.

Purity

Activity Assay Protocol

Reaction Components

Active Kinase

Active p38beta $(0.1\mu g/\mu l)$ diluted with Kinase Dilution Buffer III and assayed as outlined in activity sample plot. (Note: these are working suggested dilutions and it is recommended that the researcher perform a serial dilution of Active p38beta for optimal results).

Kinase Dilution Buffer, pH 7.2

Kinase Assay Buffer I diluted at a 1:4 ratio (5X dilution) with $50ng/\mu I$ BSA solution.

Kinase Assay Buffer I, pH 7.2

Buffer components: 25mM MOPS, 12.5mM β -glycerolphosphate, 25mM MgC1₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use. [³²P]-ATP Assay Cocktail

Prepare 250 μ M [³²P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150 μ l of 10mM ATP Stock Solution, 100 μ l [^{32P}]-ATP (1mCi/100 μ l), 5.75ml of Kinase Assay Buffer. Store 1ml aliquots at -20°C.

10mM ATP Stock Solution

Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer. Store 200μ l aliquots at -20° C.

Substrate

ATF2 substrate prepared in buffer (50mM Tris-HCl, pH 7. 2, 50mM NaC1₂, 5mM EDTA and 0.25mM DTT) to a final concentration of 0.5mg/ml.

Assay Protocol

- Step 1. Thaw [³²P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.
- Step 2. Thaw the Active p38beta, Kinase Assay Buffer, Substrate and Enzyme Dilution Buffer on ice.
- Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20μl:

Gentaur Europe BVBA Voortstraat 49, 1910 Kampenhout BELGIUM Tel 0032 16 58 90 45 <u>info@gentaur.com</u>

- Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.
- Step 5. Initiate the reaction by the addition of 5μl [³²P]-ATP Assay Cocktail bringing the final
- Step 6. volume up to 25μl and incubate the mixture in a water bath at 30°C for 15 minutes.

- Step 7. After the 15 minute incubation period, terminate the reaction by spotting 20μl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.
- Step 8. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.
- Step 9. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
- Step 10. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.
- Calculation of [P³²]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for $5\mu l [^{32}P]$ -ATP / pmoles of ATP (in $5\mu l$ of a 250 μ M ATP stock solution, i.e., 1250pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)

Corrected cpm from reaction / [(SA of ³²P-ATP in cpm/pmol)*(Reaction time in min)*(Enzyme amount in μg or mg)]*[(Reaction Volume) / (Spot Volume)]

